Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons
نویسندگان
چکیده
We present a method for the study of quantum fluctuations of dissipative structures forming in nonlinear optical cavities, which we illustrate in the case of a degenerate, type I optical parametric oscillator. The method consists in (i) taking into account explicitly, through a collective variable description, the drift of the dissipative structure caused by the quantum noise, and (ii) expanding the remaining -internalfluctuations in the biorthonormal basis associated to the linear operator governing the evolution of fluctuations in the linearized Langevin equations. We obtain general expressions for the squeezing and intensity fluctuations spectra. Then we theoretically study the squeezing properties of a special dissipative structure, namely, the bright cavity soliton. After reviewing our previous result that in the linear approximation there is a perfectly squeezed mode irrespectively of the values of the system parameters, we consider squeezing at the bifurcation points, and the squeezing detection with a plane–wave local oscillator field, taking also into account the effect of the detector size on the level of detectable squeezing.
منابع مشابه
Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC
In this paper we numerically investigate the effect of relative phase on thestability of temporal bright solitons in a Nano PT- Symmetric nonlinear directionalcoupler (NLDC) by considering gain in bar and loss in cross. We also study the effect ofrelative phase on the output perturbed bright solitons energies, in the range of 0 to 180 . By using perturbation theory three eigenfunctions an...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملNumerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC
PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...
متن کاملQuantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure
We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...
متن کاملQuantum fluctuations and correlations of spatial scalar or multimode vector solitons in Kerr media
We apply the Green’s function method to determine the global degree of squeezing and the transverse spatial distribution of quantum fluctuations of solitons in Kerr media. We show that both scalar bright solitons and multimode vector solitons experience strong squeezing on the optimal quadrature. For vector solitons, this squeezing is shown to result from an almost perfect anti-correlation betw...
متن کامل